| 1. | Finally introduce the finding process of berry phase in experiment 本文中还介绍了berry相的实验验证的进展情况。 |
| 2. | Quantum phase factors are introduced by the numbers in this article . including a - b phase - , berry phase 本文系统地介绍了量子相位因子,包括a - b效应中的相位因子及berry相位因子。 |
| 3. | Discuss and analyze changing characteristic of berry phase , the berry phase is intimately connected with the nonstationarity of a quantum state 几何相与量子状态的非定态性有直接的联系,定态没有berry相。 |
| 4. | Completely analyze and discuss berry phase factors of spinl / 2 particle in rotating magnetic field . give the meanings of berry phase " geometrical description 全面分析和讨论了在旋转磁场中自旋1 2系统的berry相位因子,给出了berry相位的几何诠释。 |
| 5. | In order to study geometric phase expediently in chapter 3 and 4 , we have discussed the berry phase of quantum state evolving adiabatically and the aharnonov - anandan phase of quantum state evolving nonadiabatically 为了便于第三章和第四章中的几何量子计算问题的讨论,我们还在第二章中对量子态的绝热演化过程的berry相以及量子态的非绝热演化过程的aharnonov - anandan相作了概述。 |
| 6. | In chapter 3 , we focus our attention on discussing the geometric phase ( berry phase ) of quantum state evolving adiabatically and the controlling mechanism about the two - qubit conditional geometric quantum phase - shift gate realized by using of the adiabatic geometric phase - shift 第三章,集中讨论了量子态的绝热演化几何相( berry相)以及绝热几何相移实现的两量子位条件几何量子相移门的控制机制。 |
| 7. | Then introduce berry ' s work of finding phase factors including quantum phase factors accompanying adiabatic changes , on the base of this , discuss berry phase factors of spinl / 2 particle in rotating magnetic field 本文接着介绍了berry1984年发现几何相因子的工作,内容包括从量子绝热定理推导berry几何相因子。在此基础上,把旋转磁场中自旋1 2系统作为研究对象,对其几何相位的变化特点进行了讨论。 |
| 8. | We examin e the generation of bell state in bose - einstein condensates of two interacting species trapped in a double - well configuration analytically and the density of probability for finding the entangled bell state is given . we find that the oscillation amplitude of the probability of density for finding the entangled bell state becomes greater as the ratio of the interspecies interaction strength and the tunneling rate increases , moreover the self - interaction strength of the component a ( b ) has no effect on it . also we use the time - dependent su ( 2 ) gauge transformation to diagonalize the hamilton operator , obtain the berry phase and analytically the time - evolution operator 此外我们还研究了在双阱玻色-爱因斯坦凝聚中纠缠态的演化,研究发现随着组分间相互作用和随穿率的比值的增加系统演化到bell态的概率变大,而且组分自身内在的相互作用对形成bell态的几率没有影响;并且用含时su ( 2 )规范变换对角化哈密顿量得到了系统的berry位相和时间演化算符,并研究了量子随穿过程。 |
| 9. | But difficulty in maths will come forth when meeting high spin particles if we using such method . on base of the characteristic of energy space , we obtained the wavefunctions and geometric phase by the trial function method in this paper . the berry phase of the system are also obtained after an evolution period 文中在绝热近似下根据自旋粒子能级间隔特点用尝试波函数法求出了旋转磁场中高自旋粒子系统的波函数及几何相位,解决了用一般方法求解时出现高阶微分方程的困难。 |